
3. Modeling System Workflows:

Activity Diagrams

Shaoning Zeng

Whatõs Learned?

}2. Modeling requirements

} 2.1. Capturing a System Requirement

}actor

}use case

} 2.2. Use Case Relationships

}<<include>>

}<<extend>>

} 2.3. Use Case Overview Diagrams

3. Modeling System Workflows: Activity

Diagrams
}3.1. Activity Diagram Essentials ╦

}3.2. Activities and Actions ῠ Ṷ

}3.3. Decisions and Merges Ṽ ḿ

}3.4. Doing Multiple Tasks at the Same Time ‖ ḿ

}3.5. Time Events

}3.6. Calling Other Activities ῇ ῠ

}3.7. Objects  

}3.8. Sending and Receiving Signals

}3.9. Starting an Activity ῠ ῠ

}3.10. Ending Activities and Flows ῠ Ị

}3.11. Partitions (or Swimlanes) № | ᾎ

}3.12. Managing Complex Activity Diagrams

Activity diagrams

}Use cases show what your system should do.

}Activity diagrams allow you to specify how your system

will accomplish its goals.

}Activity diagrams show high-level actions chained

together to represent a process occurring in your system.

} For example, you can use an activity diagram to model the

steps involved with creating a blog account. Ṛ

Business processes

}Activity diagrams are particularly good at modeling

business processes . ￼Ị

}A business process is a set of coordinated tasks that

achieve a business goal, such as shipping

customersô orders. ḩ

}Some business process management (BPM) tools allow

you to define business processes using activity diagrams,

or a similar graphical notation, and then execute them.

} This allows you to define and execute, for example, a payment

approval process where one of the steps invokes a credit card

approval web service using an easy graphical notation such as

activity diagrams.

Process View

3.1. Activity Diagram Essentials

Figure 3 -2. Activity diagrams model

dynamic behavior with a focus on processes;

the basic elements of activity diagrams are

shown in this blog account creation process

3.2. Activities and Actions

}Actions are active steps in the completion of a process.

}An action can be a calculation, such as Calculate Tax, or a task,

such as Verify Authorôs Details. Ṷ ɵṚ

}An activity is the process being modeled, such as washing

a car. ῠɵ￼Ị

}An action is a step in the overall activity, such as Lather

(₮), Rinse (), and Dry (Ṟ╪).

Figure 3 -3. Capturing the three actions

Lather , Rinse, and Dry that make up

washing a car in an activity diagram

Figure 3 -4. The activity frame can be omitted

3.3. Decisions and Merges

}Decisions are used when you want to execute a different

sequence of actions depending on a condition.

} Ṽ ɵ  

}Decisions are drawn as diamond-shaped nodes with one

incoming edge and multiple outgoing edges

Figure 3 -5. Only one edge is followed

after a decision node

Figure 3 -6. If the input value of age is

1200, then the Notify Blog Entry too

long action is performed

Figure 3 -7. Beware of diagrams where

multiple guards evaluate to true

3.4. Doing Multiple Tasks at the Same Time

}Consider a computer assembly workflow that involves

the following steps: ᾶ

} 1. Prepare the case.

} 2. Prepare the motherboard.

} 3. Install the motherboard.

} 4. Install the drives.

} 5. Install the video card, sound card, and modem.

}Steps that occur at the same time are said to occur

concurrently or in parallel. ḿ Ṛ

Figure 3 -8. In UML 2.0, it's better to be as

clear as possible and to show merge nodes

forks and joins for parallel actions

forks
№ẃ

joins

Figure 3 -9. Both outgoing paths are followed

at the fork, in contrast with decision nodes,

where only one outgoing path is taken

Figure 3 -10. The computer assembly

workflow demonstrates how forks and joins

work in a complete activity diagram

3.5. Time Events

}Sometimes time is a factor in your activity.

}You may want to model a wait period, such as ᾖὫ

}waiting three days after shipping an order to send a bill.

}You may also need to model processes that kick off at a

regular time interval, such as

} a system backup that happens every week.

}Time events are drawn with an hourglass () symbol.

Figure 3 -11. A time event with an

incoming edge represents a timeout

recurring time event (Ԋᴆ)

}A time event with no incoming flows is a recurring time

event, meaning itôs activated with the frequency in the

text next to the hourglass.

} ᾋὛ

}Notice that there is no initial node in Figure 3-12; a time

event is an alternate way to start an activity.

} ỳ ᾱɡ ῠ ῠᾒ ₡ ɡ

}Use this notation to model an activity that is launched

periodically. ᾒ ῠ

Figure 3 -12. A time event with no incoming

flows models a repeating time event

3.6. Calling Other Activities ῒז ꜚ

}As detail is added to your activity diagram, the diagram

may become too big, or the same sequence of actions

may occur more than once.

}When this happens, you can improve readability by

providing details of an action in a separate diagram,

allowing the higher level diagram to remain less cluttered.

}A call activity node calls the activity corresponding to its

node name. This is similar to calling a software procedure.

Figure 3 -13. Rather than cluttering up

the top -level diagram with details of the

Prepare Motherboard action , details are

provided in another activity diagram

Figure 3 -14. The Prepare Motherboard

activity elaborates on the motherboard

preparation process

3.7. Objects

}3.7.1. Showing Objects Passed Between Actions

}An object node represents an object that is available at a

particular point in the activity,

} ῠ￼Ị Ῐ Ỵ ᾒ 

} and can be used to show that the object is used, created, or

modified by any of its surrounding actions.

}An object node is drawn with a rectangle.

Figure 3 -15. The Order object node emphasizes

that it is important data in this activity and

shows which actions interact with it

3.7. Objects

}3.7.2. Showing Action Inputs and Outputs

}Pins show that an object is input to or output from an action.

}An input pin means that the specified object is input to an

action.

}An output pin means that the specified object is output from an

action.

Figure 3 -16. Pins in this change request

approval process allow finer -grained

specification of input and output parameters

Comparison

Object nodes

Åobject nodes are good
at emphasizing the flow
of data through an
activity.

Pins

Åpins are good at
emphasizing that an
object is required input
and output

Transformation

}If the Approve Payment action needs only parts of the

Order object not the whole object, you can use a

transformation to show which parts are needed.

}  ᾒ

}Transformations allow you to show how the output from

one action provides the input to another action.

} ♆Ṷ ᾒ Ỵ ♆Ṷ ᾒ Ỵ

Figure 3 -17. Transformations show where

input parameters come from

3.7. Objects

}3.7.3. Showing How Objects Change State During an

Activity ῠ   ᾒḣ

Figure 3-18. The focus of this diagram is the change of state of the

Order object throughout the order approval process

3.7. Objects

}3.7.4. Showing Input to and Output from an Activity

} In addition to acting as inputs to and outputs from actions,

object nodes can be inputs to and outputs from an activity.

}Activity inputs and outputs are drawn as object nodes

straddling () the boundary of the activity frame, as shown in

Figure 3-19.

} This notation is useful for emphasizing that the entire activity

requires input and provides output.

Figure 3 -19. Object nodes can be used to

emphasize input to and output from an activity

3.8. Sending and Receiving Signals

Activities may
involve
interactions with
external people,
systems, or
processes.

In activity
diagrams, signals
represent
interactions
with external
participants.

in
te

ra
c
ti
o

n
s
ig

n
a

l

3.8. Sending and Receiving Signals

}Signals are messages that can be sent or received, as in the

following examples:

} Your software sends a request to the credit card company to

approve a credit card transaction, and your software receives a

response from the credit card company (sent and received, from the

perspective of your credit card approval activity).

} The receipt of an order prompts an order handling process to begin

(received, from the perspective of the order handling activity).

} The click of a button causes code associated with the button to

execute (received, from the perspective of the button event handling

activity).

} The system notifies a customer that his shipment has been delayed

(sent, from the perspective of the order shipping activity).

3.8. Sending and Receiving Signals

}A receive signal has the effect of waking up an action in

your activity diagram.

}

} The recipient of the signal knows how to react to the signal

and expects that a signal will arrive at some time but doesn't

know exactly when.

}Send signals are signals sent to an external participant.

}

}When that external person or system receives the message, it

probably does something in response, but that isn't modeled in

your activity diagram.

Figure 3 -20. Send and receive signal nodes

show interactions with external participants

