r "% ¥ R Fr = .
fﬁj;ﬁ UNIFIED MODELING LANGUAGE L

WE SET THE STANDARD

1S.

Modeling Your Deployed System:
Deployment Diagrams

Shaoning Zeng,



http://zsn.cc/

15. Modeling Your Deployed System:

Deployment Diagrams

15.1. Deploying a Simple System 3t % # £ % 4.
15.2. Deployed Software: Artifacts 4f & 2k #4: 4| &
15.3.What Is a Node? ¥ $£.

| 5.4. Hardware and Execution Environment Nodes
|5.5. Communication Between Nodes

15.6. Deployment Specifications

15.7.When to Use a Deployment Diagram



15. Modeling Your Deployed System:
Deployment Diagrams

Logical View Process View

Uee Case View

-

Jevelopment View

Physical View

Figure 15-1. Deployment diagrams focus on the
Physical View of your system



15.1. Deploying a Simple System

To show computer hardware, you use a node, as shown
in Figure 15-2. 4 Al % & & F 5214
» This system contains a single piece of hardware: a Desktop PC.

It's labeled with the stereotype <<device>> to specify
that this is a hardware node.

< <devi(e> >
Desktop PC

Figure 15-2. Use nodes to represent
hardware in your system



15.1. Deploying a Simple System

Modeling Software #% 44 — 4| &

O

<<artifact>>
Jdpacman.jar

Figure 15-3.A physical software file such
as a jar file is modeled with an artifact



15.1. Deploying a Simple System

Draw the artifact inside the node to show that a software
artifact is deployed to a hardware node.

#Hp Mty SBEFHEZP

< < device>>
Desktop PC

O

< <artifact>>
Jdpacman_jar

Figure 15-4. Drawing an artifact inside a node shows
that the artifact is deployed to the node



15.2. Deployed Software: Artifacts

Artifacts are physical files that execute or are used by your
software. #| & & 2k 4& A X H 1T ¢4 4 22 A

Common artifacts you'll encounter include:
» Executable files, such as .exe or .jar files =T #, 4T X 4

» Library files, such as .dlls (or support .jar files) & x 44

» Source files, such as .java or .cpp files & 4X, %%

» Configuration files that are used by your software at runtime,
commonly in formats such as .xml, .properties, or .txt & & X

< <artifact >
Jdpacman.jar

Jdpacman.jar

O

< <artifact> >
Jdpacman. jar

i

Figure 15-5. Equivalent representations of a 3dpacman.jar artifact



15.2.1. Deploying an Artifact to a Node

An artifact is deployed to a node, which means that the
artifact resides on (or is installed on) the node.

HEFETF LT

< < device> >
Desktop PC

O

< <arifact=>
Jdpacman_jar

Figure 15-6. The 3dpacman.jar artifact deployed to a
Desktop PC node



15.2.1. Deploying an Artifact to a Node

You can also draw a dependency arrow from the artifact
to the target node with the stereotype <<deploy>>, as

shown in Figure |5-7. @& 4% #i 57 3k 44 &

< <artifact>> h <<deploy=>= :-}_ {[:;EEEEE;E}

Ypaomanjar [T

Figure 15-7.An alternate way to model the relationship
deployment



Figure 15-8. A compact way to show

deployment is to write the name of the
artifact inside the node %% 7 =

z
< < fdevice> >
Desktop PC
idpacman.jar
pd J 2




15.2.2. Tying Software to Artifacts

When designing software, you break it up into cohesive
groups of functionality, such as components or packages,
which eventually get compiled into one or more files or

artifacts. % %44 2z ¥4 & (@4 X4a)
In UML-speak, if an artifact is the physical actualization of
a component, then the artifact manifests that component.

An artifact can manifest not just components but any
packageable element, such as packages and classes.




Figure 15-9. Listing artifact names inside a
node saves a lot of space compared to

drawing an artifact symbol for each artifact

T R RSB il (00T

<<fevite> >
Server

activation.jar
axls.jar
commons-discovery.jar
commans-logging.jar
jaxrpc.jar
5aaj.jar
logdy.jar
wsdldj jar
mail_jar
xml-apis.jar
xercesimpl.jar




Figure 15-10. A deployment notation that

artifact names) allows you to show artifact
dependencies

15 FH il i 157 5 R ol B

< < device> =
Server

< <artifact=> O O

<<artifact>>
myapplicationjar [~ ':5"

logdj.jar




Figure 15-11. The artifact mycomponent.jar
manifests the component MyComponent

fill it 15 LA TGS VR AR

<<artifact>> B ___==manifest=> o« << g0mponent: > {
mycomponent.jar MyComponent




15.3. What Is a Node?

A node is a hardware or software resource that can host
software or related files. % & 2 48 58 {4 X % 14

» You can think of a software node as an application context; generally
not part of the software you developed, but a third-party
environment that provides services to your software.

The hardware nodes: 58 f+ ¥ %
» Server

» Desktop PC

» Disk drives

The execution environment nodes: =T #, /T 3% 45 % &
» Operating system

» J2EE container

» Web server

» Application server




15.4. Hardware and Execution Environment Nodes

< < fdevice> >
Sun Blade Server

< <ggequtionEnvironment > >
Application Server

< <device= >
Sun Server

< <gxpqutionEnvirpnment >
Application Server




15.4.1. Showing Node Instances

<< device > =
svrl - Sun Blade Server

N ' LoadBalancer D

read traffic - | write traffic

S

& Ty

<< device=> < < devices>
il : Sun Blade Server svr2 - Sun Blade Server

Figure 15-16. One node gets read traffic and the other gets
write traffic



15.5. Communication Between Nodes

Communication paths are used to show that nodes
communicate with each other at runtime. % & @& 13

A communication path is drawn as a solid line connecting
two nodes. @& 1z %1%

The type of communication is shown by adding a
stereotype to the path. i# 13 £ &

< <fevice > << [(P/IP=>= << device>>
Desktop PC Server

Figure 15-17.A Desktop PC and Server communicate via
TCPI/IP



Figure 15-18. You can also show

environment nodes
PAT AT 1 5 2 8] ()18 E

<< device> > << devies>
Server Server
<< pgecutionErvironment>> <<RMl== < <gyecutionEnvironment ==
Web Server EIB Container




15.6. Deployment Specifications #& G

Installing software is rarely as easy as dropping a file on a
machine; often you have to specify configuration parameters
before your software can execute. & % %k 4

A deployment specification is a special artifact specifying how
another artifact is deployed to a node. It provides information
that allows another artifact to run successfully in its
environment. 3¢ F M, 00, X e TR 4| S AL FF| 7 5 L
Deployment specifications are drawn as a rectangle with the
stereotype <<deployment spec>>.

There are two ways to tie a deployment specification to the

deployment it describes: #f & 3f & 4. i, #| A7 44 X 9 3f &

» Draw a dependency arrow from the deployment specification to the
artifact, nesting both of these in the target node.

» Attach the deployment specification to the deployment arrow, as
shown in




Figure 15-19. Equivalent ways of tying a

it describes

R F B LY G e B FE B ) PR A 7V

<<exequtionEnvironment >
Axis

s {f:deﬂu et specs >
- pﬂ;.'mdd
< <ppcutionEnvironment s = '

Ruis <<deploy>>1

c{d?lu entspec=> | > ccantifi>> O <<artifact>>
epr;]r.mdd inventoryService jar inventoryService jar




Figure 15-20. Showing the properties of a

the right shows an instance populated with

values
ST AE I O & s2 1)

<< deployment spec= > << deployment specs >
deploy.wsdd deploy.wsdd
classMame - String classMame ; inventory.InventoryService
allowedMethods ; Stringl] allowedMethods - *




15.7. When to Use a Deployment Diagram

Deployment diagrams are useful at all stages of the design
process. 3f £ & & B F F7 A &t B

» When you begin designing a system, you probably know only basic
information about the physical layout. % 324 5

» For example, if you're building a web application, you may not have
decided which hardware to use and probably don't know what your
software artifacts are called.

But you want to communicate important characteristics of
your system, such as the following: #4 i % 4. & & 4 {4

» Your architecture includes a web server, application server, and
database. AR % & 4544

» Clients can access your application through a browser or through a
richer GUI interface. £ 7 5% 15 1] 7 &,
» The web server is protected with a firewall. f5 k3% &2 &



Figure 15-21. A rough sketch of your web
application

Thin Client Rich Client
Firewall
Web Server Application Server Database




Figure 15-22. You can provide any amount of

KT RGBT R U

Thin Client

Firewall

<< device==
Sun Server

< <pxequtionEnvirgnment > =
Wb Server

PetAdoptionStore war

<<RMI==>

Rich Client

<< davice==
Sun Server

< <executionEnvironment>>
EJB Container

PetAdoptionStore.war

<<JDB(>>

Database




|5. Modeling Your Deployed System:
Deployment Diagrams

15.1. Deploying a Simple System

15.2. Deployed Software:Artifacts

15.3.What Is a Node!

| 5.4. Hardware and Execution Environment Nodes

|5.5. Communication Between Nodes

15.6. Deployment Specifications

v Vv Vv Vv Vv Vv V9

15.7.When to Use a Deployment Diagram



See you ...




